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Many areas in sub-Saharan African are data-poor and poorly accessible. The estimation of soil organic carbon
(SOC) stocks in these areas will have to rely on the limited available secondary data coupled with restricted
field sampling. We assessed the total SOC stock, its spatial variation and the causes of this variation in Limpopo
National Park (LNP), a data-poor and poorly accessible area in southwestern Mozambique. During a field survey,
A-horizon thickness was measured and soil samples were taken for the determination of SOC concentrations.
SOC concentrations were multiplied by soil bulk density and A-horizon thickness to estimate SOC stocks. Spatial
distribution was assessed through: i) a measure-and-multiply approach to assess average SOC stocks by land-
scape unit, and ii) a soil-landscape model that used soil forming factors to interpolate SOC stocks from observa-
tions to a grid covering the area by ordinary (OK) and universal (UK) kriging. Predictions were validated by both
independent and leave-one-out cross validations. The total SOC stock of the LNPwas obtained by i) calculating an
area-weighted average from the means of the landscape units and by ii) summing the cells of the interpolated
grid. Uncertainty was evaluated by the mean standard error for the measure-and-multiply approach and by
the mean kriging prediction standard deviation for the soil-landscape model approach. The reliability of the es-
timates of total stockswas assessed by the uncertainty of the input data and its effect on estimates. Themean SOC
stock from all sample points is 1.59 kg m−2; landscape unit averages are 1.13–2.46 kg m−2. Covariables
explained 45% (soil) and 17% (coordinates) of SOC stock variation. Predictions from spatial models averaged
1.65 kg m−2 and are within the ranges reported for similar soils in southern Africa. The validation root mean
square error of prediction (RMSEP) was about 30% of the mean predictions for both OK and UK. Uncertainty is
high (coefficient of variation of about 40%) due to short-range spatial structure combined with sparse sampling.
The range of total SOC stock of the 10,410 km−2 study area was estimated at 15,579–17,908 Gg. However, 90%
confidence limits of the total stocks estimated are narrower (5–15%) for the measure-and-multiply model and
wider (66–70%) for the soil-landscape model. The spatial distribution is rather homogenous, suggesting levels
are mainly determined by regional climate.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Soil organic carbon (SOC) drives natural soil fertility and is a com-
mon indicator of livelihoods and ecosystem functions. It has been a
focus of attention in the context of both agricultural development and
carbon sequestration. Under the various United Nations protocols,
there is an increasing need for accurate estimates of SOC stocks at
national and sub-national scale to aid policy makers in making land
use andmanagement decisions (Milne et al., 2007). Estimates of current
SOC stocks and their spatial variation are the starting point for the esti-
mation of the carbon sink capacity and SOC sequestration. The focus of
the study determines the type of data required. In the case of climate
change, estimates of total SOC stocks are important for mitigation

purposes. However, when carbon payments are considered, the spatial
distribution of stocks and their respective change become important
(Antle et al., 2007).

Techniques for estimating SOC stocks have been grouped into two
categories (Mishra et al., 2010; Thompson and Kolka, 2005): (1) the
measure-and-multiply approach and (2) the soil-landscape modeling
approach. In themeasure-and-multiply approach the study area is strat-
ified. Point measurements per stratum are averaged and multiplied by
the area of each stratum of maps that stratify (Guo et al., 2006; Tan
et al., 2009; Thompson and Kolka, 2005). Soil survey maps and field
observations are primary resources to estimate SOC stocks with the
measure and multiply approach that has been applied from regional
(Amichev and Galbraith, 2004; Batjes, 2008; Tan et al., 2004;
Thompson and Kolka, 2005) to global (Batjes et al., 2007) scales. The
approach has the advantage of being simple, though it is not exempt of
several limitations like potentially high within-stratum SOC variability
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(Mishra et al., 2010; Thompson and Kolka, 2005). The soil landscape
modeling approach analyzes the spatial variability of SOC stocks with
respect to variations in environmental covariables such as topography,
land use or climate (Mishra et al., 2010). A model is built based on the
various environmental covariables covering the entire study area plus
limited number of field observations of SOC stocks, and is used to make
predictions over a grid across the study area (Gessler et al., 2000;
Thompson et al., 2001). These are then summed to an area total. Exam-
ples of use of this approach are many, e.g., Ungaro et al. (2010) and
Ziadat (2005), though many have successfully been applied to small
areas (b100 ha) and using of digital elevation models as the covariate,
e.g. Florinsky et al. (2002), Bhatti et al. (1991) and Gessler et al. (2000).

The soil-landscape approach may result in a lower estimation error
at each prediction location, due to the use of complete spatial coverages
of secondary information, i.e., the environmental covariables. The
measure-and-multiply approach has the advantage of simplicity,
although within-stratum variability (heterogeneous strata) limits
precision (Aubry and Debouzie, 2000; Mishra et al., 2010; Thompson
and Kolka, 2005). Further, the soil-landscape approach produces a
grid map of SOC stocks whereas the measure-and-multiply approach
produces a chloropleth map with an average value per stratum. It is
not clear a priori which method gives lower estimation errors for total
stocks.

In 2001, Mozambique declared an area known as “Coutada 16”
(hunting zone) the Limpopo National Park (LNP), which forms part of
a trans-frontier parkwith South Africa and Zimbabwe. The LNP provides
ecosystem services and supports the livelihoods of about 20,000 people
living within its boundaries. The formation of LNP and the planned
relocation of the communities within the park will result in major
land use changes, both in terms of vegetation and wildlife (Ministerio

do Turismo, 2003). These changes are expected to affect SOC stocks in
and around the LNP, including in resettlement areas where SOC stocks
are a major contributor to soil fertility. Any change cannot be assessed
without a proper baseline, i.e., present-day stocks. Therefore, the aim
of this study was to quantify the total SOC stock and its spatial variation
in the Limpopo National Park, and the probable causes of any variation.
Further, we wanted to compare the various approaches to estimating
SOC stocks.

2. Study area

The study area of 10,410 km−2 covers most of Limpopo National
Park, which is one part of the study area of the “Competing Claims on
Natural Resources” project (Giller et al., 2008), centered on the trans-
frontier national parks of the Mozambique–Zimbabwe–South Africa
border. LNP is located in Mozambique (Fig. 1) between 22° 25′ and
24° 10′ S and 31° 18′ and 32° 38′ E. Altitudes range from about 50 to
about 500 m above sea level (Stalmans et al., 2004). It has a warm
arid climate (BWh, Köppen classification) with a dry winter and mean
annual temperature exceeding 18 °C (Peel et al., 2007). Absolute maxi-
mum temperatures (between November and February) increase north-
wards to above 40 °C. Annual rainfall decrease northwards from above
500 mm in the southeast to about 350 mm at the extreme north
(Ministerio do Turismo, 2003; Stalmans et al., 2004).

The dominant lithology is the extensive Quaternary aeolian sand
cover along the NNW–SSE spine of the park. Tertiary sedimentary
rocks (limestones, sandstone) are found close to the drainage lines
where the sand mantle has been exposed. Rhyolite rocks from the
Karroo formation are located along the western border while alluvium

Fig. 1. (a) LNP landscapes and sampling points; (b) annual precipitation. Landscapes after Stalmans et al. (2004); precipitation after Hijmans et al. (2011).
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lies along the main drainage lines. Soils derived from aeolian sands
range from shallow to deep and are sandy, those derived from rhyolite
are shallow and clayey, those derived from sedimentary rocks are
deep, structured and clayey and those derived from alluviummaterials
are clayey (Manninen et al., 2008; Rutten et al., 2008; Stalmans et al.,
2004).

Very little has been published about the soil distribution in the LNP.
The national reconnaissance soil map at 1:1,000,000 scale shows LNP
covered by five soil units from five major soil grouping (FAO and
UNESCO, 1997; INGC et al., 2003; INIA, 1995); the Arenosols/Haplic
Luvisols and Ferralic Arenosols on the Quaternary Aeolian sands, the
Eutric Leptosols over the Karroo formation, and the Calcaric Cambisols
and Eutric Fluvisols along the main drainage lines. The LNP was classi-
fied into ten landscape units by Stalmans et al. (2004) on the basis of
plant community composition, their environmental determinants and
distribution. For the present study, two small units (b1% of the area)
were merged into the larger ones, resulting in eight units (Fig. 1a):
Combretum/Mopane Rugged Veld (CMR), Limpopo Levubu Floodplains
(LLF), Limpopo north (LN), Mixed Combretum/Mopane woodland
(MCM), Mopane Shrubveld on Calcrete (MSC), Nwambia sandveld
(NS), Pumbe Sandveld (PS), Salvadora angustifolia floodplains (SAF).
Given the rocky nature of the LN and MCM units, we assumed their
SOC contents to be zero. Most landscapes in LNP are dominated by
plant communities with Colophospermum mopane. However, this
mopane vegetation is not present in the Aeolian sands (PS) and in wet-
ter (LLF and SAF) landscapes along the major drainage lines. The park
has only a few improved roads, and access is quite difficult, especially
off-road, due to dense vegetation, rough ground, and largewild animals.

3. Methodology

A summary of the methodology follows; later in the section we
explain each step in detail. We assessed SOC stocks for sampling points,
its variation across the LNP by landscape, and the total SOC stock. First
SOC concentrations were converted to SOC stocks at the sampling
points using the field measured A-horizon thickness and estimated
soil bulk density. To estimate the SOC stocks distribution across the
LNP, we have followed two approaches: (a) the measure-and-multiply
method where mean stocks are calculated per landscape unit, and
(b) the soil-landscape approach where stocks are estimated over a
grid using spatial models derived using auxiliary information and
limited field sampling. Total stocks were calculated by summing up
(a) the estimated stocks of the landscape units and (b) the estimates
at each grid cell. In addition, total stocks were estimated based on
calculated naïve and spatial means converted to LNP area size. We
also assessed the uncertainty of estimates of stocks' spatial distribu-
tion by calculating the standard error (SD of the mean) and kriging
prediction standard deviation, respectively for the measure-and-
multiply and soil-landscape approaches. Uncertainties of estimates
of total stocks were obtained by calculating the standard error and
mean kriging prediction standard deviation plus the 90% confidence
interval. Finally we assessed the reliability of the estimates of total
stocks by assessing the uncertainty of the input data and its effect
on estimates of total stocks. The results from the various methods
are then compared based on their width of confidence interval
(Janssen and Heuberger, 1995; Smith et al., 1997; Wösten et al.,
2001). Statistical analysis was performed in the R environment for
statistical computing (R Development Core Team, 2006).

3.1. Field sampling and laboratory analysis

Field samplingwas carried out during the same field campaign as for
studies reported earlier (Cambule et al., 2012), following a stratified
random design focusing on accessible areas. This design provides a
statistically-valid sample with high operational efficiency (De Gruijter
et al., 2006). The landscape units described by Stalmans et al. (2004)

were used as strata, because they express the integrated effect of soil-
forming processes. Soil samples were collected from the entire field-
identified A-horizon of variable depth (which was recorded), in a total
of 60 clusters. The number of cluster per stratum was proportional to
stratum area. A cluster was defined as two orthogonal and mid-way
intersecting transects of 720 and 360 m, respectively, along which
seven sampling points, were placed 180 m apart. To capture the maxi-
mum variation, the longer transect was oriented perpendicular to the
slope at the midpoint. A GPS was used to navigate to the coordinates
of planned observations. Field positional adjustments were made,
wherever necessary, to ensure sample representativeness (for example,
avoiding anthills). The field-identified A-horizon was chosen as the
sample volume because it is where most biological activities take
place and therefore most of the soil carbon is stored (Gessler et al.,
2000). In order to ignore very short-range SOC variation, five sub-
samples from the four corners of a 90 × 90 m support area plus the
center were thoroughly mixed into a composite sample, from which a
portion was taken for analysis. This support corresponds to medium-
resolution remotely sensed data (e.g., Landsat and SRTM) and to
agricultural fields of smallholder farmers.

In the laboratory the samples were all scanned with a near-infrared
(NIR) spectrometer (Shepherd and Walsh, 2002) and a sub-set was
analyzed for SOC concentrations and particle size (van Reeuwijk,
2002). The sub-set was used to build a Partial Least Square Regression
(PLSR) model to translate NIR measurements into SOC concentration
which was later used to compute SOC concentration at all observation
points. Details on the establishment of the PLSR model are described
by Cambule et al. (2012). The PLSR model explained 83% of variation
in laboratory-measured SOC concentration.

3.2. Assessing SOC stocks

3.2.1. SOC stocks at the sampling points
To assess SOC stocks at sampling points, SOC concentrations

(Table 1) were converted into SOC stocks using the field measured A-
horizon thickness and soil bulk density (BD), estimated as 1.44 ±
0.02 g·cm−3. This estimate is based on measurements (n = 14) by
COBA Consultores (1982) around the confluence area between the
Singuedzi and Elephant Rivers and Nhantumbo et al. (2009) on the
sandy soils in the extensive NS landscape unit. This average was used
instead of estimating BD at each point by a pedotransfer function
(PTF) from the measured clay content and SOC concentration, because
there is no calibrated PTF for the area and the use PTF developed else-
where is not appropriate even under similar ecological conditions
(Gijsman et al., 2002). The average BD used is consistent with ranges
reported in the literature by EUROCONSULT (1989) for the sandy loam
to sandy clay loam soil textural classes found in LNP (1.4–1.65 g·cm−3).
Our practice is consistent with that of Williams et al. (2008) in the
miombo woodlands of central Mozambique, who justified the use of a
single value of BD (1.29 cm−3) because of the low variability of BD
from 28 composite topsoil samples. Despite the similarity in soil tex-
tural classes, their study site is located in a much wetter climate than
ours (annual precipitation of about 700 mmvs. 450 mm) as depicted
by the much richer miombo vegetation, so the soils with higher
organic matter are expected to have lower BD.

Table 1
Summary statistics of SOC concentration, A-horizon thickness and SOC stocks.

SOC Unit N Min 1st Qu. Med. Mean 3rd Qu. Max

SOC concentration⁎ % 399 0.00 0.61 0.88 0.93 1.20 2.68
A-horizon thickness cm 399 0.0 10.0 13.0 13.3 17.0 26.0
SOC stock kg m−2 399 0.00 0.95 1.47 1.59 2.10 5.59
SOC stock, clusters kg m−2 59 0.51 1.09 1.48 1.62 2.02 3.91

⁎ Source: Cambule et al. (2012).
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3.2.2. SOC stocks spatial distribution

3.2.2.1. The measure-and-multiply approach. In this approach, we
interpreted the spatial distribution of SOC stocks across the LNP to be
a function of the sampling strata, i.e., the landscape map of Stalmans
et al. (2004). In this approach an average of each landscape unitwas cal-
culated based SOC stocks data from sampling points. The averages were
computed by a single-factor ANOVA (R function ‘lm’), followed by a
pairwise means comparison with pooled standard deviation and the
Holm correction for multiple comparisons (R function ‘pairwise.t.test’)
to group and rank landscape units, thus showing the stocks spatial
distribution across the LNP as a chloropleth map of single values (with
uncertainty) per landscape unit.

3.2.2.2. The soil-landscape approach.Here, we interpreted the spatial dis-
tribution of SOC stocks across LNP as a function of soil-forming factors
(McBratney et al., 2003). These were represented by explanatory
variables derived from readily-available, full-coverage secondary infor-
mation. Spatial models were developed to describe the variation in SOC
stocks in relation to the soil-forming factors. These steps are now
described in detail.

3.2.2.2.1. Soil-forming explanatory variables. We followed the frame-
work for digital soil mapping described by McBratney et al. (2003). In
the study area, SOC stocks are expected to be related to a number of
soil forming factors including rainfall, vegetation, topography, parent
material, and soil conditions. Selected secondary data corresponding
to these soil forming factors (Table 2) include: (1) themean annual pre-
cipitation on a 30 arc-second (approximately 1 km) resolution grid
obtained from theWorldClimwebsite (Hijmans et al., 2011), (2) multi-
spectral satellite imagery (Landsat TM, 30 m resolution) forwet and dry
seasons obtained at USGS website (www.usgs.gov, preprocessing: L1T
level), (3) the 3 arc-second (approximately 90 m) resolution from
Shuttle Radar Topographic Mission (SRTM) digital elevation model
(DEM), obtained at JPL website (www.jpl.nasa.gov, preprocessing:
research grade), (4) a 1:250,000 lithology map developed by the
Geological Survey of Finland (Manninen et al., 2008; Rutten et al.,
2008) and (5) the 1:1,000,000 scale landscape map of Stalmans et al.
(2004) as an integrated soil forming factor. We also considered first-
and second-order trend surfaces, which are surrogates for regional
change in soil-forming factors.

3.2.2.2.2. Selection of explanatory variables for spatial models. To select
the explanatory variables for model building, we first extracted their
values at sampling points through map overlay. The SOC stock at these
points was linearly regressed on the continuous explanatory variables,
and as a one-way or multiway linear partitioning of variance for the
categorical variables, both using R function ‘lm’. Models were evaluated
by ANOVA of themodel compared to a null model, and by visual inspec-
tion of regression diagnostic plots (Fox, 1997). The highest adjusted
goodness-of-fit of models with acceptable diagnostics was used to
select explanatory covariables for model building (Moore et al., 1993).

3.2.2.2.3. Spatial structure and models. To assess the spatial structure
and scale of SOC stocks variation, we first performed the within- and
between-cluster ANOVA, then calculated the respective experimental
variograms (Franklin and Mills, 2003; Oliver, 2001; Webster et al.,

2006) for the residuals from linearmodels (obtained in previous section)
and original values of SOC stocks. Variogram maps were prepared to
visually detect any anisotropy, followed by automatic variogram model
fitting using the weighted least square (WLS) method (Pebesma,
2004). In order to minimize irregularities caused by the small sample
size and to avoid arbitrary decisions on variogrambinwidthwe applied
the residual maximum likelihood (REML) method to estimate sills
directly to the variogram cloud starting from the WLS fit (Marchant
and Lark, 2007). We also constructed variogram models of the resid-
uals from the feature-space and trend surface models described in
Section 3.2.2.2.2.

3.2.2.2.4. Spatial distribution of SOC stocks. The selected spatialmodels
were used for spatial prediction on a 1 × 1 km grid and their results
compared. This resolution was chosen as a compromise among the
resolutions of the secondary data, and also to account for the practical
support, given the scale of spatial variation as revealed by the within-
cluster variograms.

3.2.2.2.5. Model validation. Spatial models were validated by leave-
one-out cross-validation (LOOCV) as well as by independent validation.
The latter was performed by randomly splitting the sample set (70%
calibration and 30% validation) and fitting variograms based only on
the calibration sample set. Differences between observed and predicted
values were summarized as the root-mean squared error of prediction
(RMSEP) and the bias of the estimation. Independent validation was
compared with the internal measure of goodness-of-fit, i.e., the stan-
dard deviation (SD), to assess which model most closely estimates the
true error (Goovaerts, 1999; McBratney et al., 2000).

3.2.3. Assessing total LNP SOC stocks and their uncertainty
The total stock from the measure-and-multiply approach was com-

puted three ways: (1) summing the total SOC stocks of the landscape
units (equivalent to landscape unit area weighted average), (2) calcu-
lating the naive mean of all observations and multiplying by LNP
area and (3) calculating the spatial mean of all observations and multi-
plying by LNP area. The spatial mean (i.e., without stratification) was
computed as the best linear unbiased estimate (BLUE) of the mean,
taking into account themodeled spatial structure of the all-sample ordi-
nary variogram (Aubry and Debouzie, 2000). This is the first step in
kriging estimation by the Gstat package's ‘krige’ function (Pebesma,
2004).

The total stock from the soil-landscape approach was computed by
summing the interpolation grid. Prediction uncertainty was expressed
as 90% confidence intervals based on prediction standard deviations.
For the measure-and-multiply approach these were calculated in each
landscape unit from the standard errors of each unit's mean; for the
soil-landscape approach by summing the grid cells' kriging standard
deviation.

3.2.4. Assessing the reliability of total SOC stocks estimates
The sources of uncertainty affecting SOC estimates are (1) field

measurement of A-horizon thickness, (2) laboratory analysis of SOC
(3) spectral measurements of soil samples, (4) PLSR models used to
predict SOC of samples measured by spectroscopy, (5) estimation of
bulk density, and (6) sampling density. For each their reliability was
discussed based on the technique followed and numerical measures of
consistency. At sampling points we assessed uncertainty in measured
A-horizon thickness by calculating the SD. We assessed the uncertainty
of BD by assigning a range from the literature. Uncertainty in SOC
concentration was taken from previously reported work by (Cambule
et al., 2013). At spatial distribution level we assessed uncertainty of A-
horizon thickness, SOC (concentration) by calculating the standard
error and mean kriging prediction standard deviation for the measure-
and-multiply and soil-landscape model approaches, respectively. We
then assessed the reliability of estimates of total SOC stocks by checking
whether their 90% confidence interval cover the effect of uncertainties
from these three inputs.

Table 2
Summary statistics of explanatory variables.

Variable unit Min Max Range Mean SD

Elevation m.a.s.l. 54 531 477 241 99
Flow accumulation nr. pixels 0 50 50 4 8.2
NDVI wet season – −1.0 0.69 1.69 0.35 0.13
NDVI dry season – −0.34 0.56 0.91 0.11 0.08
Annual precipitation mm 362 580 218 461 40

Source: Cambule et al. (2013).
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4. Results and discussion

4.1. SOC stocks at sampling points

The histograms of SOC concentration, A-horizon thickness and
that of derived SOC stocks at sampling points are shown in
Fig. 2a–c. Whereas the histograms of concentrations and stocks
are right-skewed, that of A-horizon thickness is approximately
normally-distributed. All histograms span over a wide range (SOC
concentration: 0–2.7%; A-horizon thickness: 0–25 cm and SOC
stocks: 0–5.6 kg m−2), for this semi-arid environment. SOC concentra-
tion and A-horizon thickness are negatively-correlated (r = −0.44,
Fig. 3a); there is thus a compensation effect: total stock is less variable
than concentration, because soils with lower concentrations tend to
have thicker A-horizons, and vice-versa. This suggests that total stock
is mostly controlled by the general climate and vegetation of the area,
whereas A-horizon thickness and SOC concentrations vary with local
site factors. Thus, the expected positive correlations between SOC
stock and A-horizon (r = +0.40, Fig. 3b) and SOC concentration
(r = +0.57, Fig. 3c) are only moderate. Both relations are poor for
high SOC stocks.

The fitted variogram for A-horizon thickness (see parameters in
Section 4.2.2) shows that its range of spatial dependence almost
matches the cluster size. About two-thirds of the variance is spatially-
dependent (structural sill vs. total sill). Given this good within-station
spatial structure of A-horizon thickness (parameters in Section 4.2.2)
as well as the substantial (30%) and mostly random within-cluster
SOC variation revealed by one-way ANOVA, the low correlation can be
attributed to the high short-range variability of SOC due to local factors
such as animal activity and vegetation patches (Cambule et al., 2013).

4.2. Assessing SOC stocks spatial distribution

4.2.1. The measure-and-multiply approach
Summary statistics of A-horizon thickness, SOC concentration, and

SOC stocks by landscape unit, as well as grouped boxplots of these, are
shown in Table 3 and Fig. 4. Pairwise mean differences of A-horizon
thickness from one-way ANOVA show that landscapes units CMR, LLF
and MSC form one group, with thinner A-horizons, and NS, PS and SAF
another group; overall explained variation is 19.5%. Thus, the sandier
upland (PS and NS) and the low lying floodplains (SAF) soils tend
to have thicker A-horizons (Fig. 4a) and correspondingly lower SOC
concentrations (Fig. 4b).

Boxplots of SOC stocks by landscape unit (Fig. 4c) depict a rather
lower landscape influence as compared to SOC concentration; only
13.3% vs. 33.9% variance explained by a one-way ANOVA. The resulting
chloroplethmap produced by reclassifying themapunitswith themean
SOC stock resembles the landscape units with same sharp boundaries
(see further Section 4.2.2.4).

Pairwise mean differences from the ANOVA showed that the exten-
sive NS has distinctly lower mean SOC stock than all others but the LLF;
this latter however is not distinguishable from the others. Thus the fairly
homogeneous distribution of stocks across LNP is explained by the neg-
ative correlation between SOC concentration and A-horizon thickness.
That is, large SOC stocks may have either thick A-horizons or high SOC
concentrations (and vice-versa), but rarely both.Within-landscape var-
iation is, however, considerable as shown by the coefficients of variation
(Table 3); froman overall CV of about 60%, CMRhas the lowest andMSC
the highest. This heterogeneity may be due to local differences in soil-
forming processes that were not recognized or mappable by Stalmans
et al. (2004). The differences in sample size per landscape unit also
affect the computation: smaller sample sizes give less reliable statistics.
The summary ANOVA table is shown in Table 4.

4.2.2. The soil-landscape approach

4.2.2.1. Explained SOC stocks variation. The proportion of SOC stocks
variation of all observations explained by the scorpan covariables is
about 13.5% (landscape units, i.e., the integrated soil forming factor),
9.5% (coordinates, i.e., geographic trend) and 45% (sampling clusters,
i.e., soil factor). Other covariables explained lesser variation, so that a
spatial model based on them would not be helpful. When cluster
averages were considered, only the coordinates showed increased
explanatory power, from 9.5% to about 17%. The obtained amounts
of explained variation, from both numerical and categorical explan-
atory variables, are substantially lower than those obtained for SOC
concentration Cambule et al. (2013). That is, the SOC stocks are less
variable than SOC concentrations across the study area, which
suggests that stocks are mostly in equilibrium with regional climate
whereas concentrations vary more with local factors.

4.2.2.2. Spatial structure. The result of the within- vs. between-cluster
ANOVA shows that the clusters explain about 45% of SOC stocks varia-
tion. This is much less between-cluster effect than found for SOC
concentration (71.1%) by Cambule et al. (2013). The lower between-
cluster stocks variation and its fairly homogeneous spatial distribution
(as explained in Section 4.2.1) may be interpreted as the result of a

Fig. 2. Histograms of (a) A-horizon thickness, (b) SOC concentrations and (c) SOC stocks, all at sampling points.
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general equilibrium of SOC stocks with regional climate, i.e., in this
environment the net primary production is equal to the litter input to
the soil, and the decomposition rate matches these.

Visual assessment of the within-cluster variogram (to 720 m)
(Fig. 5a) suggested a very weak spatial dependency to about 300 m
with total sill of about 0.44 (kg m−2)2, quite close to the MSE of the
within- vs. between-cluster ANOVA (0.446 kg m−2), which is
taken as the residual variance. The total sill is equivalent to about
0.4% of SOC concentration (Fig. 3c), about three times the root
mean square error (RMSE) of SOC determination on the base of
duplicate samples (0.13%). When the experimental variogram was
fitted with a pentaspherical function using WLS fit, an unrealistic zero
nugget resulted; this was not improved by the REML. The apparent vis-
ible spatial dependence could not be modeled; therefore a pure nugget
(0.436 kg m−2) variogram was fitted by WLS (Table 5). Consequently
the within-cluster SOC stocks variation (about 55%) can be considered
as spatially random, i.e., caused by local unmapable factors with high
very short-range spatial variability (Janzen and Ellert, 2002; Mapa and
Kumaragamage, 1996). Thus the nugget found in the long-range
variogram represents a support of at least a cluster. Therefore the
remainder of the analysis is based on the cluster averages.

The long-range (beyond cluster) ordinary experimental variogram
showed local spatial dependence to a range of about 20 km (Fig. 5b).
The WLS and REML fitted spherical variograms (separations b20 km)
both showed reasonable structures, with spatial autocorrelation to
about 11 km separation (Table 5). This range is about a quarter of the

east–west dimension of the LNP, so from the present sample distribu-
tion predictions for most of the unsampled areas can only be made by
the (spatial) mean, thus giving little insight into spatial variability of
SOC stocks. The spherical model was selected based on the patchy
structure of spatial variability exhibited by most soil properties.

The nugget effect is about 12% of total sill, indicating a high propor-
tion of autocorrelation (Mapa and Kumaragamage, 1996). This low
nugget is explained by the averaging effect of clusters, since when the
variogram is based on all observations rather than cluster averages,
the nugget effect raises to about 43% of the total variance. This is
interpreted as the effect of uneven spatial distribution of the “organisms”
soil-forming factor (e.g., woody- and non-woody vegetation, termites)
as plant production in semi-arid regions depend on small differences
onwater availability, runoff, infiltration and storage, whose combination
results in a very large variation in vegetation and soil properties over
small areas (Janzen and Ellert, 2002; Martius et al., 2001; Tiessen and
Santos, 1989; Wang et al., 2009); however when this is averaged over
a cluster, this variation largely is averaged out.

The REML-fitted residual variogram (Table 5, Fig. 5c) for the re-
siduals from a first-order polynomial (the best explanatory variable,
representing “spatial position” or local trend) had a range of about
10 km and a nugget effect of 29% of the total sill. Higher-order
trend surfaces resulted in lower adjusted goodness-of-fit, and had
no obvious interpretation so were not considered. Despite the
weak spatial model, a large proportion of spatial dependence spans
across a substantial range (N10 times the cluster length; 720 m),

Fig. 3. (a) SOC concentration and (b) stocks as a function of A-horizon thickness; (c) relation between SOC stocks and concentration. Results for landscape unit NS shownwith ‘x’ symbol.

Table 3
Summary statistics by landscape of SOC concentrations, A-horizon thickness and SOC stocks.

SOC Unit CMR LLF MSC NS PS SAF

Number of samples – 14 22 197 98 15 52
SOC concentration⁎ % 1.90 0.91 1.06 0.51 0.92 0.93
SOC concentration SD % 0.36 0.20 0.47 0.26 0.33 0.41
SOC concentration CV % 18.9 22.0 44.3 51.0 35.9 44.1
Area size km2 689 264 4058 4514 253 637
A-horiz. thickness mean cm 9.07 11.11 11.59 15.82 16.53 15.07
A-horiz. thickness SD mean cm 0.86 0.75 0.36 0.41 0.82 0.66
A-horiz. Thickness CV % 35.5 31.5 43.1 25.7 19.1 29.6
SOC stock mean kg m−2 2.46 1.50 1.62 1.13 2.02 2.05
SOC stock SD mean kg m−2 0.25 0.14 0.07 0.06 0.15 0.13
SOC stock CV % 38.6 43.1 57.1 53.5 28.1 46.6
SOC total stocks Gg 1695.9 395.4 6587.7 5081.8 510.3 1307.4

⁎ Based on data from Cambule et al. (2012).
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although this range is short relative to the LNP dimensions; thus
similarly to the ordinary variogram model, most of unsampled area
is predicted by the trend surface, a marginal improvement over the
spatial mean. None of beyond-cluster variogram maps showed
anisotropy.

4.2.2.3. Selection of spatial predictionmodel. Based on the above result we
had therefore the following options for the spatial model: ordinary
kriging (OK) considering only the SOC stocks from sampling clusters
(soil), and universal kriging (UK) with the soil-forming explanatory
variable “spatial position” (the coordinates) determining the clear but
weak trend. UK is a combination of the standard model of multiple
linear regression and the geostatistical methods of ordinary kriging
the (trend) residuals (McBratney et al., 2000). The fitted first-order
polynomial (plane) represents the trend, whose coefficients (slope in
each direction) indicated decrease towards theNNW. This is interpreted
as the effect of decreased annual precipitation and longer dry season in
this direction, moving away from the Indian Ocean.

4.2.2.4. SOC stocks distribution in LNP. Following the demonstration that
within-cluster stocks variation has no spatial structure, cluster averages

were used as “points” and therefore the block-krigingwas implemented
as “punctual” kriging over the practical support of 1 × 1 km grid, a
similar size to the 720 × 720 m clusters. The summary statistics of the
SOC stocks across the park by the soil-landscape modeling approach is
shown in Table 6.

The two spatial models predicted similarly as the means differ by
about 2%. However OK has larger extreme values, by about 14% and
7% in the lower and higher end, respectively. The maps (Fig. 6a and c)
show clear hot and cold spots. These are unlikely to be true hot/cold
spots, rather, the result of limited sampling density relative to the
variogram range; thus areas between apparent hot/cold spots are
predicted by the spatial mean, resulting in the “pock-marked” map.
Both krigedmaps show a smooth surface, by contrast to the chloropleth
map from the measure-and-multiply approach (Fig. 6b). The UK map
(Fig. 6c) shows a clear but weak NNW–SSE trend (especially in the
higher predictions in the SE corner) and fits well the moderate drop-
off in rainfall (Fig. 1b), although adjusted best-fit of linear model of
stocks on annual precipitation were not as good as the trend surface.
The precipitation surface also takes into account the modest elevation
differences (approx. 150 m), which apparently do not improve the
relation with SOC.

Similarly the uncertainty in the estimates (Fig. 7) is high (CV about
40%) and as is usual for kriging, is much lower near observation points;
this effect ismore pronounced in OK than UK. In the former, SD is as low
as 20% of the mean prediction closer to sampling clusters, rapidly
increasing to the maximum SD over most of the study area. The uncer-
tainty of theUK estimates follows a similar pattern, however,withmore
gradual changes due to the trend surface. The high uncertainty ismainly
due to the low sampling density relative to the short-range spatial
variation.

4.2.2.5. Model validation. Validation statistics are presented in Table 6.
The RMSEP determined by LOOCV is about 44 and 43% of the median
of predicted SOC stocks by OK and UK, respectively and therefore
poor. OK and UK RMSEP are respectively about 6 and 8% higher than
their mean kriging SD, which is therefore a slightly over-optimistic
estimation of the actual error.

Refitted spatial models for independent validation were constrained
by the reduced number of point-pair within the effective range and the
corresponding necessity to make wide bins for the experimental
variograms. However, the resulting variograms showed a reasonable
structure, with ranges similar to the all-cluster averages variograms.

Fig. 4. Relation between landscape units and (a) A-horizon thickness, (b) SOC stocks and (c) concentration. Letters show significant differences inmeans by Duncan's newmultiple range
test, and the mean is shown by a dot.

Table 4
Summary of ANOVA by Duncan's new multiple range test for A-horizon thickness, SOC
concentration and TOC stocks by landscape: α = 0.05 and df = 397.

Variable Landscape Mean Std. error Group

A-horizon thickness
(adj. R2 = 19.5)

CMR 9.07 0.86 a
LLF 11.11 0.75 a
MSC 11.59 0.36 a
NS 15.82 0.41 b
PS 16.53 0.81 b
SAF 16.06 0.66 b

SOC concentration
(ad. R2 = 33.9)

CMR 1.90 0.10 a
LLF 0.91 0.04 b
MSC 1.05 0.03 b
NS 0.51 0.03 b
PS 0.87 0.07 b
SAF 0.93 0.06 c

TOC stocks
(adj R2 = 13.3)

CMR 2.46 0.25 a
LLF 1.50 0.14 ab
MSC 1.62 0.07 ab
NS 1.13 0.06 bc
PS 2.02 0.15 cd
SAF 2.05 0.13 d
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Nuggetwas however set to 0.0 as REMLfit resulted in anunrealistic neg-
ative value (Table 3). The zero nugget corresponds to the averaging ef-
fect of clustered samples.

The RMSEP of the independent validation of both spatial models are
about 30% of the median predicted SOC stock. When comparing with
mean kriging SD, RMSEP is, in both cases, about 35% lower, so kriging
SD is a pessimistic measure of the actual prediction error. The models
are also biased towards over-prediction, though UK is slightly less so.

There are many published studies which estimate SOC stocks;
however, in most of these the proportion of the error relative to
the range of the predictions is not discussed. Of those that do, our re-
sults appear to be slightly better than those obtained in large areas,
and as good as those obtained from models applied to smaller
areas. In large areas, Mendonça-Santos et al. (2010) estimated the SOC
of Rio de Janeiro state (Brazil) in an area of about 44,000 km−2, also
following the scorpan-SSPFe framework. Their results show SOC stocks
strongly correlatedwith landscape units and their finalmap is dominated
by SOC stocks b2.5 kg m−2 and a RMSEP of about 1.2–1.4 kg m−2,
i.e., a CV of 50%. Similarly, Mishra et al. (2010) predicted SOC stocks
for an area of about 650 00 km−2 in seven Midwestern states of the
USA, following three methods: multiple linear regression, regression
kriging and geographically-weighted regression, obtaining a propor-
tion of RMSE to mean prediction of 103%, 69% and 68%, respectively.
Scott et al. (2002) estimated SOC stocks for all of New Zealand based
on soil moisture and temperature regimes and land use. Their findings
also show a RMSE proportion of about 44% relative to the mean predic-
tions in sandy soils, but much better (7%) for soils with low-activity
clays.

In small areas the precision of estimates is somewhat better. For
example, Minasny et al. (2006) estimated SOC stocks in the lower

Namoi Valley (1 500 km−2) in Australia following the scorpan-SSPFe
framework. Their estimates were mostly in the range 2–9 kg m−2

(to 1 m depth) with CV of 30–140%. Simbahan et al. (2006) estimated
SOC stocks in Nebraska for fields of about 50–65 ha using OK, kriging
with external drift, regression kriging, and co-kriging, and estimated
SOC stocks from 4 to 7 kg m−2 with RMSE from 1.1 to 1.3 kg m−2; for
a CV from 17 to 30%. Our estimates over a much larger (10,415 km2)
area are similar to these.

However, our soil-landscape modeling approach was not very
precise: a RMSEP about 30% the prediction median for both OK and
UK. This may be due to the more complex soil-landscape relations at
larger areas of the already highly (spatially) variable soil carbon in the
landscape (Janzen and Ellert, 2002), justifying the general less precise
estimates also found in the literature. It may also be a result of the low
sampling density. Nevertheless, in data-poor and poorly accessible
areas like our study area, achieving comparable results to those from
smaller areas shows that the approach is as promising as those based
on more comprehensive sampling.

4.3. Total SOC stocks estimates and their uncertainty

The estimates of total SOC total stocks in LNP are presented in
Table 7. The results reveal a difference of about 15% between applied
methods, being that obtained by summing the landscape totals higher
than that from the spatial mean.

However, all estimates of the area-normalized mean stock are in a
narrow range, 1.59–1.62 kg m−2, which is comparable to those report-
ed in the literature for southern Africa. A review by Vågen et al. (2005)
reports values for southern Africa savanna soils (to 30 cm depth)
between 1 and 1.3 kg m−2 (sandy) and 1.44 to 2 kg m−2 (clay).
Williams et al. (2008) studied the SOC stocks of the eastern miombo

Fig. 5. Empirical and fitted variogammodels (a) within-cluster, based on all sampling points, (b) between-cluster, based on cluster averages; (c) residuals from first-order trend surface,
based on cluster averages.

Table 5
Nugget, structural sill and range of REMLfitted variogrammodel parameters of SOC stocks.

Variogram type Nugget
(kg m−2)2

Structural sill
(kg m−2)2

Range
(m)

Ordinary, SOC stock (within-cluster) ⁎ 0.436 0 0
Ordinary, SOC stock (between-clusters) 0.059 0.453 10,692
Residual from 1st order trend, SOC stock 0.119 0.294 10,362
Ordinary, A-thickness (within-cluster) 6.089⁎⁎ 12.652⁎⁎ 788

⁎ WLS fitted variogram.
⁎⁎ unit in cm2.

Table 6
Summary statistics of kriging predictions, kriging prediction standard deviation (SD) and
validation results of SOC stocks (kg m−2).

Model Prediction Cross-
validation

Validation

Min Median Mean Max SD RMSEP Bias RMSEP Bias

OK 0.71 1.63 1.62 3.53 0.68 0.72 0.01 0.51 −0.35
UK 0.81 1.59 1.59 3.29 0.64 0.69 0.01 0.49 −0.26
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woodlands soils in Mozambique (to 30 cm depth) and found stocks
of about 1.8 to 14 kg m−2. The values are relatively high and may
be explained by high leaf litter from leguminous trees (Brachystegia
spiciformis), typical of rich miombo vegetation. Ryan et al. (2011)
estimated SOC stocks (to 50 cm depth) in the same vegetation type
in Gorongoza District (central Mozambique) at 13.3 kg m−2. Our
study area is in a much drier environment with less dense vegetation
and that of leguminous trees so our figures are much lower.

Our estimates of SOC stocks by the different methods differ by about
15%, while estimates of the mean SOC stocks only differ by about 2%.
This is because of the relative area covered by the different landscape
units, each with a different mean stock. This is also corroborated by
the wide range between the extreme values of SD (93%), the naive
mean having the least dispersion, in contrast to uncertainty estimates
from prediction by the spatial models, of which OK is the worse. The
naive mean does not account for spatial correlation of the clusters, and
thus underestimates the variance, which is thus more realistic when
estimated by the spatial mean.

The different approaches result in different confidence intervals. The
spatially-explicit kriging-basedmethods of the soil-landscape approach
have very wide intervals, 69% (OK) and 65% (UK) of the mean predic-
tion. This is because each grid cell has an uncertainty, and these are
not pooled, as in the measure-and-multiply or means approaches. The
narrow interval for the naive mean is probably too optimistic, because
it does not consider the spatial correlation between observations. Thus
the confidence interval based on the spatial mean (15% of the mean
prediction) is preferred if only the total stock, not accounting for spatial
distribution either over a grid or by landscape unit, is wanted.

Despite the differences in confidence intervals and totals, when one
is interested in total stocks the measure-and-multiply approach is

sufficient given the similarity in the estimates of total stocks. It has
also the advantage of not requiring a variogram, which may be difficult
to model from a small sample. On the contrary, when interested on the
spatial patterns of stocks, then the soil-landscape models are required.

4.4. Reliability of SOC stocks estimates and potential Improvements

This section discusses the effect of each input on estimates of total
stocks, and how each could be improved.

The measurements of A-horizon thickness showed a normal distri-
bution, with a precise estimation of the mean (SD–mean about 2% of
the mean), narrow 95% confidence limits (4% of the mean) and few
extreme values (5% trimmed mean within 95% confidence limits). The
field method is simple and reproducible with an estimated precision
of b0.5 cm in this landscape. There seems to be little room for further
improvement, thus its impact on the reliability of estimates is minimal.

Laboratory results reported by Cambule et al. (2012), show that SOC
concentration measured on 129 samples has an SD of the mean just 6%
of the mean, a 95% confidence interval of 12% of the mean, and 5%
trimmed mean within 95% confidence limits. Further, RMSE on twenty
duplicate samples for quality control was 0.13% SOC, about 15% of the
mean and similar to the expected precision for the Walkley–Black
method. Again the room for improvement is small. Note however that
this results do indirectly influence the PLSR predicted SOC concentra-
tion (see further on).

The spectrometer used to scan the soil samples has an internal vali-
dation test and its spectrum is calibrated before each scan to an internal
gold reference. Spectra were only read when internal test was positive.
Soil samples were uniformly prepared, and duplicates showed almost
no difference in spectra. So it is expected that uncertainty derived
from spectroscopy are minimal.

Laboratory-measured SOC concentrations were used to build a PLSR
calibration model with which estimates were made for the remaining
283 samples. The summary statistics for the entire sample set showed
that the SD of the mean was only 3% of the mean (down from the 6%
for the laboratory sub-set), the 95% confidence limits were about 5% of
themean and that the 5% trimmedmean fell within the 95% confidence

Fig. 6. SOC stocks spatial distribution as predicted by (a) ordinary kriging, (b) landscape unit mean and by (c) universal kriging.

Fig. 7. Kriging prediction standard deviation by universal kriging.

Table 7
Mean SOC stocks, their uncertainty and total stocks, following different approaches.

Approach Method Mean
(kg m−2)

SD
(kg m−2)

TOC stock
(Gg)

90% conf. limit
(Gg)

Measure
and multiply

Landscape 1.59 0.45 15,579 ±1433
Naive mean 1.59 0.05 17,828 ±831
Spatial mean 1.60 0.14 17,908 ±2669

Soil-landscape
modeling

OK 1.62 0.68 16,858 ±11,663
UK 1.59 0.64 16,545 ±10,892

54 A.H. Cambule et al. / Geoderma 213 (2014) 46–56



Author's personal copy

limits of original data. The calibration model had a RMSEP of 0.32% SOC,
corresponding to 15% the mean. This uncertainty includes that from the
lab analysis of the 129 samples. If the mean stocks would change by 3%,
it would still be within the SD-error so it is not expected to affect the
90% confidence intervals. Therefore the estimates made based on
spectroscopy can be considered reliable.

Bulk density was used to convert SOC from volume concentration to
weight and therefore both uncertainty as well as reliability of SOC stock
estimates is affected by the BD. In our study the spatial distribution of
BD is not known, nor is there a known relation with landscape unit.
Only a single value of soil bulk density (1.44 ± 0.02 g·cm−3), derived
from nearby measurements and checked against literature, was used.
However, given the limited range of SOC concentration (0–2.68%,
Table 2) and that of the textural classes (sandy loam to sandy clay
loam) from the study area, it seems unlikely that BD could be outside
the range 1.4–1.65 g·cm−3 (EUROCONSULT, 1989). This would corre-
spond to maximum variation in estimated BD of about 15% which
would affect the SOC stocks estimates by the same amount. This is
more than the SD for the naive and spatial means (SD b 9%) and there-
fore one could expect that the 90% confidence intervals of total SOC
stocks estimated by these methods would also be exceeded. This is
then the most unreliable part of the estimate. However, this is a
worst-case situation: from our estimate of 1.44 g·cm−3 to the upper
limit 1.65 g·cm−3, which would correspond to sandier soils across the
entire LNP. Our estimate is based on not only somewhat heavier soils
(sandy clay loams) near the confluence of the Singuedzi and Elephant
Rivers, similar to the S. angustifolia Floodplains (SAF) map unit, but
also from sandy soils from the NS map unit. Thus, it seems unlikely
that the true mean BD as high as this upper limit, and so the reliability
of our estimate may not be as poor as this worst-case.

Despite the quality control in measurements, the successful PLSR
calibration model and the validation statistics for spatial prediction
models, the kriged maps have high uncertainty away from sampling
locations, and so the reliability of the kriged maps of SOC stock spatial
distribution is questionable. This results froma combination of low sam-
pling density and short spatial autocorrelation range relative to study
area dimensions. Bulkingwithin-cluster samples at the target grid reso-
lution of 1 × 1 km would remove the high within-cluster variability.
Thus future sampling can bemore efficient: only one-seventh of the ob-
servations are needed, although some timemust be taken in adequately
covering the block with a composite sample.

With a known variogram, reducing uncertainty in SOC stocking
mapping can be aided by the “optimal sampling scheme for isarithmic
mapping” (OSSFIM) approach through which the target kriging predic-
tion standard error can be achieved by either (1) reducing the sampling
spacing or (2) making predictions over larger blocks (McBratney and
Webster, 1981; McBratney et al., 1981). To lower the uncertainty to,
e.g., a coefficient of variation of 30% or less (SD ≤ 0.48 kg m−2 on a
mean of 1.59 kg m−2), observations would have to be made at maxi-
mum 4 km interval for cover the whole area by block universal kriging
on 1 km blocks (total of 700, Table 8). Similar SD can be obtained by
predicting block averages on 5 × 5 km blocks based on 138 points
spaced 9 km apart, i.e., spatial resolution is traded for efficiency. A blocks
size smaller than 1 × 1 km has too much short-range variability to map
without very intensive sampling; whether a 1 × 1 km, 5 × 5 km or

larger block is needed depends on the minimum decision area for man-
agement. There is a limit to the efficiency gain, since groundmust in any
case be traversed. Saving time by bulking the within-cluster samples
would make possible to reach further away sampling points.

The sampling points in the regular grid derived from the OSSFIM
approach can further be optimized by the spatial simulated annealing,
which also allows the minimization of the kriging variance taking into
account existing samples (van Groenigen et al., 1999); this would be a
sound strategy for a second phase of sampling, starting from the current
phase to achieve a target uncertainty. This would however result in a
more spread of sampling points which would cost sampling time in
exchange formapquality, though not realistic in poorly-accessible areas.

5. Conclusions

In the present study, we estimated the total SOC stocks in the LNP
based on limited data collected from accessible areas and have made use
of secondary information covering the entire area. The estimates followed
both the “measure-and-multiply” and “soil-landscape modeling” ap-
proaches. In the former we used the per stratum mean, the naive
mean and the spatial mean, while in the latter the ordinary and univer-
sal krigingmethods, chosen based on the fact that sampling cluster and
regional trend were the soil-forming factors that explained SOC stocks
variation the most.

Themean SOC stocks obtained in allmethods are very close however,
the SD were distinct, with the soil-landscape modeling methods having
at least four times as high SD as the maximum SD for the measure-and-
multiply ones. The high uncertainty is mainly due to the short-range
spatial variation, by the sparse sample, the weak trend, and poor corre-
lation with covariables. It would be difficult to improve on this estimate
without intensive sampling.

The total stocks, obtained by summing (1) the landscape averages
and (2) the block-universal-kriged estimates of 1 × 1 km averages
across the whole study area are similar, and also similar to average
estimates in soils of similar texture from southern Africa. The high
uncertainty of these estimates limit its use as a baseline, however they
may be useful for many agricultural studies.

Acknowledgments

We thankfully acknowledge support from the LNP management
for logistic support, The International Research and Education Fund
(INREF) of the Wageningen University through the “Competing
Claims on Natural Resources Programme” for funding. We would
like also to thank the National Agrarian Research Institute (IIAM)
for making available the NIR spectrometer (MPA) for soil sample
spectral acquisition.

References

Amichev, B.Y., Galbraith, J.M., 2004. A revised methodology for estimation of forest soil
carbon from spatial soils and forest inventory data sets. Environmental Management
33, S74–S86.

Antle, J.M., Stoorvogel, J.J., Valdivia, R.O., 2007. Assessing the economic impacts of agricul-
tural carbon sequestration: terraces and agroforestry in the Peruvian Andes. Agriculture,
Ecosystems & Environment 122 (4), 435–445.

Aubry, P., Debouzie, D., 2000. Geostatistical estimation variance for the spatial mean in
two-dimensional systematic sampling. Ecology 81 (2), 543–553.

Batjes, N.H., 2008. Mapping soil carbon stocks of Central Africa using SOTER. Geoderma
146 (1–2), 58–65.

Batjes, N.H., Al-Adamat, R., Bhattacharyya, T., Bernoux, M., Cerri, C.E.P., Gicheru, P.,
Kamoni, P., Milne, E., Pal, D.K., Rawajfih, Z., 2007. Preparation of consistent soil data
sets formodelling purposes: secondary SOTERdata for four case study areas. Agriculture,
Ecosystems & Environment 122 (1), 26–34.

Bhatti, A.U., Mulla, D.J., Frazier, B.E., 1991. Estimation of soil properties and wheat yields
on complex eroded hills using geostatistics and thematic mapper images. Remote
Sensing of Environment 37 (3), 181–191.

Cambule, A.H., Rossiter, D.G., Stoorvogel, J.J., Smaling, E.M.A., 2012. Building a near infra-
red spectral library for soil organic carbon estimation in the Limpopo National Park,
Mozambique. Geoderma 183–184, 41–48.

Table 8
Optimal sample spacing for an uncertainty (CV) target of 30% (mean = 1.59 kg m−2).

Block size
(side, m)

Widest
spacing (m)

Achieved
SD (kg m−2)

Number of observation
points required

1000 4000 0.4361 700
2000 5000 0.4475 448
4000 7000 0.4565 229
5000 9000 0.4730 138
7500 20,000 0.4325 28
10,000 20,000 0.3717 28

55A.H. Cambule et al. / Geoderma 213 (2014) 46–56



Author's personal copy

Cambule, A.H., Rossiter, D.G., Stoorvogel, J.J., 2013. A methodology for digital soil mapping
in poorly accessible areas. Geoderma 192, 341–351.

Consultores, C.O.B.A., 1982. Aproveitamento hidroagrícola de Massingir-Chinhangane.
SERLI, Maputo.

De Gruijter, J.J., Brus, D.J., Bierkens, M.F.P., Knotters, M., 2006. Sampling for natural
resource monitoring. Springer, Berlin.

EUROCONSULT, 1989. Agricultural Compendium for Rural Development in the Tropics
and Subtropics, Third revised edition. Elsevier Scientific, Amsterdam (etc.).

FAO, Unesco, 1997. Mapa dos Solos do Mundo — Legenda revista. FAO, Roma.
Florinsky, I.V., Eilers, R.G., Manning, G.R., Fuller, L.G., 2002. Prediction of soil properties by

digital terrain modelling. Environmental Modelling & Software 17 (3), 295–311.
Fox, J., 1997. Applied Regression, Linear Models, and Related Methods. Sage, Newbury

Park.
Franklin, R.B., Mills, A.L., 2003. Multi-scale variation in spatial heterogeneity for microbial

community structure in an eastern Virginia agricultural field. FEMS Microbiology
Ecology 44, 335–346.

Gessler, P.E., Chadwick, O.A., Chamran, F., Althouse, L., Holmes, K., 2000. Modeling soil-
landscape and ecosystem properties using terrain attributes. Soil Science Society of
America Journal 64 (6), 2046–2056.

Gijsman, A.J., Jagtap, S.S., Jones, J.W., 2002. Wading through a swamp of complete confu-
sion: how to choose amethod for estimating soil water retention parameters for crop
models. European Journal of Agronomy 18 (1–2), 77–106.

Giller, K.E., Leeuwis, C., Andersson, J.A., Andriesse, W., Brouwer, A., Frost, P., Hebinck, P.,
Heitkonig, I., van Ittersum, M.K., Koning, N., Ruben, R., Slingerland, M., Udo, H.,
Veldkamp, T., van de Vijver, C., van Wijk, M.T., Windmeijer, P., 2008. Competing
claims on natural resources: what role for science? Ecology and Society 13 (2), 18.

Goovaerts, P., 1999. Geostatistics in soil science: state-of-the-art and perspectives.
Geoderma 89 (1–2), 1–45.

Guo, Y., Amundson, R., Gong, P., Yu, Q., 2006. Quantity and spatial variability of soil carbon
in the conterminous United States. Soil Science Society of America Journal 70 (2),
590–600.

Hijmans, R.J., Cameron, S., Parra, J., 2011. WorldClim — Global Climate Data. Berkley, CA.
INGC, UEM, Fews-NET MIND, 2003. Atlas for Disaster Preparedness and Response in the

Limpopo basin. Instituto Nacional de Gestao de Calamidades (INGC).
INIA, 1995. Legenda da Carta Nacional de Solos— escala 1:1,000,000, Instituto Nacional de

Investigação Agronómica, Maputo.
Janssen, P.H.M., Heuberger, P.S.C., 1995. Calibration of process-orientedmodels. Ecological

Modelling 83 (1–2), 55–66.
Janzen, H.H., Ellert, B.H., 2002. Organicmatter in the landscape. In: Lal, R. (Ed.), Encyclopedia

of Soil Science. M. Dekker Inc., New York, pp. 905–909.
Manninen, T., Eerola, T., Makitie, H., Vuori, S., Luttinen, A., Senvano, A., Manhica, V., 2008.

The Karoo volcanic rocks and related intrusions in southern and central Mozambique.
Geological Survey of Finland, Special Paper 48. 211–250.

Mapa, R.B., Kumaragamage, D., 1996. Variability of soil properties in a tropical Alfisol used
for shifting cultivation. Soil Technology 9 (3), 187–197.

Marchant, B.P., Lark, R.M., 2007. Robust estimation of the variogram by residual maxi-
mum likelihood. Geoderma 140 (1–2), 62–72.

Martius, C., Tiessen, H., Vlek, P.L.G., 2001. The management of organic matter in tropical
soils: what are the priorities? Nutrient Cycling in Agroecosystems 61 (1), 1–6.

McBratney, A.B., Webster, R., 1981. The design of optimal sampling schemes for local
estimation and mapping of regionalized variables — II: program and examples.
Computers & Geosciences 7 (4), 335–365.

McBratney, A.B., Webster, R., Burgess, T.M., 1981. The design of optimal sampling schemes
for local estimation and mapping of regionalized variables — I: theory and method.
Computers & Geosciences 7 (4), 331–334.

McBratney, A.B., Odeh, I.O.A., Bishop, T.F.A., Dunbar, M.S., Shatar, T.M., 2000. An overview
of pedometric techniques for use in soil survey. Geoderma 97 (3–4), 293–327.

McBratney, A.B., Mendonca Santos, M.L., Minasny, B., 2003. On digital soil mapping.
Geoderma 117 (1–2), 3–52.

Mendonça-Santos, M.L., Dart, R.O., Santos, H.G., Coelho, M.R., Berbara, R.L.L., Lumbreras,
J.F., 2010. Digital soil mapping of topsoil carbon content of Rio de Janeiro state, Brazil.
In: Boettinger, J.L., et al. (Ed.), Digital Soil Mapping, Progress in Soil Science, vol. 2.
Springer Science+Business Media B.V., pp. 255–266. http://dx.doi.org/10.1007/978-
90-481-8863-5_21.

Milne, E., Adamat, R.A., Batjes, N.H., Bernoux, M., Bhattacharyya, T., Cerri, C.C., Cerri, C.E.P.,
Coleman, K., Easter, M., Falloon, P., Feller, C., Gicheru, P., Kamoni, P., Killian, K., Pal,
D.K., Paustian, K., Powlson, D.S., Rawajfih, Z., Sessay, M., Williams, S., Wokabi, S.,
2007. National and sub-national assessments of soil organic carbon stocks and
changes: the GEFSOC modelling system. Agriculture, Ecosystems & Environment
122 (1), 3–12.

Minasny, B., McBratney, A.B., Mendonça-Santos, M.L., Odeh, I.O.A., Guyon, B., 2006. Predic-
tion and digital mapping of soil carbon storage in the Lower Namoi Valley. Australian
Journal of Soil Research 44, 233–244.

Ministerio do Turismo, 2003. Limpopo National Park: Management and Development
Plan. Ministério do turismo, Maputo.

Mishra, U., Lal, R., Liu, D., Van Meirvenne, M., 2010. Predicting the spatial variation of the
soil organic carbon pool at a regional scale. Soil Science Society of America Journal 74
(3), 906–914.

Moore, I.D., P.E., Gessler, Nielsen, G.A., Peterson, G.A., 1993. Soil attribute prediction using
terrain analysis. Soil Science Society of America Journal 57, 443–452.

Nhantumbo, A., Ledin, S., Du Preez, C., 2009. Organic matter recovery in sandy soils under
bush fallow in southern Mozambique. Nutrient Cycling in Agroecosystems 83 (2),
153–161.

Oliver, M.A., 2001. Determining the spatial scale of environmental properties using the
variogram. In: Tate, N.J., Atkinson, P.M. (Eds.), Modelling Scale in Geographical
Information Science. John Willey & Sons, Ltd., pp. 193–219.

Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers &
Geosciences 30 (7), 683–691.

Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Koppen–
Geiger climate classification. Hydrology and Earth System Sciences 11, 1633–1644.

R Development Core Team, 2006. R: A Language andEnvironment for Statistical Computing.
R Foundation for Statistical Computing, Vienna.

Rutten, R., Makitie, H., Vuori, S., Marques, J.M., 2008. Sedimentary rocks of the mapai
formation in the Massingir–Mapai region, Gaza province, Mozambique. Geological
Survey of Finland, Special Paper 48. 251–262.

Ryan, C.M., Williams, M., Grace, J., 2011. Above- and Belowground Carbon Stocks in a
Miombo Woodland Landscape of Mozambique. Biotropica 43 (4), 423–432.

Scott, N.A., Tate, K.R., Giltrap, D.J., Tattersall Smith, C., Wilde, H.R., Newsome, P.J.F., Davis,
M.R., 2002. Monitoring land-use change effects on soil carbon in New Zealand: quan-
tifying baseline soil carbon stocks. Environmental Pollution 116 (Supplement 1),
S167–S186.

Shepherd, K.D., Walsh, M.G., 2002. Development of reflectance spectral libraries for
characterization of soil properties. Soil Science Society of America Journal 66 (3),
988–998.

Simbahan, G.C., Dobermann, A., Goovaerts, P., Ping, J., Haddix, M.L., 2006. Fine-resolution
mapping of soil organic carbon based on multivariate secondary data. Geoderma 132
(3–4), 471–489.

Smith, P., Smith, J.U., Powlson, D.S., McGill, W.B., Arah, J.R.M., Chertov, O.G., Coleman, K.,
Franko, U., Frolking, S., Jenkinson, D.S., Jensen, L.S., Kelly, R.H., Klein-Gunnewiek, H.,
Komarov, A.S., Li, C., Molina, J.A.E., Mueller, T., Parton, W.J., Thornley, J.H.M., Whitmore,
A.P., 1997. A comparison of the performance of nine soil organic matter models using
datasets from seven long-term experiments. Geoderma 81 (1–2), 153–225.

Stalmans, M., Gertenbach, W.P.D., Carvalho-Serfontein, F., 2004. Plant communities and
landscapes of the Parque nacional do Limpopo, Mocambique. Koedoe 47 (2), 61–81.

Tan, Z., Lal, R., Smeck, N.E., Calhoun, F.G., Slater, B.K., Parkinson, B., Gehring, R.M., 2004.
Taxonomic and geographic distribution of soil organic carbon pools in Ohio. Soil
Science Society of America Journal 68 (6), 1896–1904.

Tan, Z., Liu, S., Tieszen, L.L., Tachie-Obeng, E., 2009. Simulated dynamics of carbon stocks
driven by changes in land use, management and climate in a tropical moist ecosys-
tem of Ghana. Agriculture, Ecosystems & Environment 130 (3–4), 171–176.

Thompson, J.A., Kolka, R.K., 2005. Soil carbon storage estimation in a forested watershed
using quantitative soil-landscape modeling. Soil Science Society of America Journal
69 (4), 1086–1093.

Thompson, J.A., Bell, J.C., Butler, C.A., 2001. Digital elevation model resolution: effects on
terrain attribute calculation and quantitative soil-landscape modeling. Geoderma
100 (1–2), 67–89.

Tiessen, H., Santos, M., 1989. Variability of C, N and P content of a tropical semiarid
soil as affected by soil genesis, erosion and land clearing. Plant and Soil 119
(2), 337–341.

Ungaro, F., Staffilani, F., Tarocco, P., 2010. Assessing and mapping topsoil organic carbon
stock at regional scale: a scorpan kriging approach conditional on soil map delinea-
tions and land use. Land Degradation & Development 21 (6), 565–581.

Vågen, T.-G., Lal, R., Singh, B.R., 2005. Soil carbon sequestration in sub-Saharan Africa: a
review. Land Degradation & Development 16 (1), 53–71.

van Groenigen, J.W., Siderius, W., Stein, A., 1999. Constrained optimisation of soil
sampling for minimisation of the kriging variance. Geoderma 87 (3–4), 239–259.

van Reeuwijk, L.P., 2002. Procedures for soil analysis. ISRIC technical paper 9.
Wang, L., Okin, G.S., Caylor, K.K., Macko, S.A., 2009. Spatial heterogeneity and sources of

soil carbon in southern African savannas. Geoderma 149 (3–4), 402–408.
Webster, R., Welham, S.J., Potts, J.M., Oliver, M.A., 2006. Estimating the spatial scales of

regionalized variables by nested sampling, hierarchical analysis of variance and
residual maximum likelihood. Computers & Geosciences 32 (9), 1320–1333.

Williams, M., Ryan, C.M., Rees, R.M., Sambane, E., Fernando, J., Grace, J., 2008. Carbon
sequestration and biodiversity of re-growing miombo woodlands in Mozambique.
Forest Ecology and Management 254 (2), 145–155.

Wösten, J.H.M., Pachepsky, Y.A., Rawls, W.J., 2001. Pedotransfer functions: bridging the
gap between available basic soil data and missing soil hydraulic characteristics.
Journal of Hydrology 251 (3–4), 123–150.

Ziadat, F.M., 2005. Analyzing digital terrain attributes to predict soil attributes for a
relatively large area. Soil Science Society of America Journal 69 (5), 1590–1599.

56 A.H. Cambule et al. / Geoderma 213 (2014) 46–56


